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Abstract. Underwater image restoration is a challenging task because
of water effects that increase dramatically with distance. This is worsened
by lack of ground truth data of clean scenes without water. Diffusion pri-
ors have emerged as strong image restoration priors. However, they are
often trained with a dataset of the desired restored output, which is not
available in our case. We also observe that using only color data is insuf-
ficient, and therefore augment the prior with a depth channel. We train
an unconditional diffusion model prior on the joint space of color and
depth, using standard RGBD datasets of natural outdoor scenes in air.
Using this prior together with a novel guidance method based on the un-
derwater image formation model, we generate posterior samples of clean
images, removing the water effects. Even though our prior did not see
any underwater images during training, our method outperforms state-
of-the-art baselines for image restoration on very challenging scenes. Our
code, models and data are available on the project’s website.

Keywords: Diffusion Models · Physics-Based Computer Vision · Un-
derwater Image Restoration

1 Introduction

Underwater images are used in many applications, such as, underwater construc-
tion and maintenance, marine sciences, and fisheries. However, their automatic
analysis is hindered because of the optical effects of the water that strongly
attenuates and scatters light in a wavelength dependent manner. This causes
color distortion and loss of contrast that exponentially increase with depth3.
With growing human activity in the oceans, clear underwater vision becomes
increasingly important.

Restoring underwater scenes is still a very challenging ill-posed problem.
Classic approaches are based on designing priors for clean images or inverting the
water formation model, and are limited by the ability to form strong priors. On
3 For consistency with computer vision literature the term depth is used throughout

to refer to the distance from the camera rather than water depth.
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Fig. 1: Our method receives as an input a single underwater image and outputs the
restored clean image and an estimated depth map. The output is estimated using a
diffusion prior trained on RGBD images and the physical image formation model.

the other hand, learning based approaches are limited by the lack of supervised
training data of clean underwater images. This is a critical issue, as the ocean
cannot be emptied for the sake of data collection.

We suggest an unsupervised restoration method (Figs. 1,2) based on an in-
verse problem approach using a diffusion prior for both color and depth, coupled
with the underwater image formation model. Restoring an image is formulated
as posterior inference, computed using a natural image prior, and a likelihood
term that is based on the underwater image formation model. The challenge with
applying this approach for underwater image restoration directly is that (i) the
degradation for each pixel depends on its depth, and other unknown parameters;
and (ii) there is no ground truth clean underwater data to train the prior.

To solve this, we replace the image prior with a prior on the joint space
of color and depth of natural images. Adding depth to the prior allows us to
formulate the forward model that forms the likelihood term over the observed
corrupted underwater image, and apply posterior sampling. Moreover, this lever-
ages the high capacity of diffusion models, in capturing the strong correlations
between color and depth in natural scenes.

We propose to train a prior model of RGBD images using available datasets
of natural outdoor scenes that were collected in air. Using in-air scenes for un-
derwater images may be counter-intuitive, but actually has strong benefits: 1) it
overcomes the lack of clean underwater image data; 2) it leads to a strong prior
that captures the joint statistics governing color and depth in natural scenes,
where, as opposed to underwater images, color does not fade with distance; 3) it
prevents overfitting to specific types of underwater images.

We then use this prior together with the underwater physical image formation
model to simultaneously estimate the clean image, its depth, and the model
parameters, all from a single underwater image (summarized in Fig. 2). We show
that our method outperforms models that were trained on underwater data.
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Fig. 2: The iterative sampling process starts in t = T with random noise in 4
channels. The denoising step outputs denoised samples x̂0 = (Ĵ0, D̂0). We use the
underwater physical image formation model together with x̂0 to optimize the water
parameters ϕ̂, and to guide the sampling towards the observed image. This process
repeats itself, gradually updating both the estimated image and depth, until t = 0,
in which x0 holds the method’s estimate for both the reconstructed scene J0 and its
depth D0.

The main contributions of this paper are:
1. We train an RGBD prior, and demonstrate that modeling color and depth

and jointly sampling them, provides a stronger diffusion prior for underwater
image restoration.

2. We propose a new method that combines the RGBD prior of in-air data
with the underwater image formation model, leading to a diffusion guidance
method that generates the restored underwater images as posterior samples.

3. We demonstrate that our method outperforms state-of-the-art underwater
image restoration methods both qualitatively and quantitatively on real and
simulated data.
We publish all our code, the new trained RGBD prior, images and results.

2 Related Works

2.1 Underwater Image Restoration and Depth Estimation

Here we review recent works that are most relevant to our method. See [61] for
a recent more comprehensive review.
Classic underwater image restoration. To cope with the ill-posed nature of
the problem, earlier works introduced tailored image priors. Some priors aim to
estimate a depth or transmission map of the scene to reduce the number of the
unknowns and then use the estimated depth to restore the scenes [7, 41,42].
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Supervised learning. Clean underwater image data is very scarce. Several
datasets aim to mitigate this issue. In UIEB [35], the images denoted as ground-
truth are generated from enhancement results of 9 different baseline methods,
and having human observers vote for the best one. The LSUI dataset [40] is
larger, produced using the same methodology, based on choosing results from 18
different methods. These datasets enable supervised learning methods, but are
still limited by their scale, the quality of the baseline methods, and the human
bias to choose visually pleasing rather than physically consistent images.

CWR [24] introduced the HICRD dataset, where the images are restored
using optical parameters impressively measured using ocean optics instruments.
Unfortunately, the images are acquired in a downward-looking position, and thus
their depth range is very limited. In FUnIE-GAN [27] a training dataset is gen-
erated by having humans select good images from a large set of unprocessed
underwater images. The humans are instructed to choose images where the fore-
ground objects are identifiable. These are then distorted by a GAN to produce
the paired poor images. A synthetic dataset was generated in [34]. The dataset
is synthesized from the NYU-v2 RGBD dataset [46], using the image formation
model equation and several sets of values for the water parameters.
Unsupervised learning. USUIR [19] aims to restore images without supervi-
sion, by separately estimating the image components (clean image, transmission,
backscatter) and using them to construct an underwater image that is used for
supervision against the original one. Subsequent frames were used in [4] for self-
supervising monocular depth estimation, and in [54] for self-supervising both
depth and restoration. In UW-NET [23] a cycle-GAN is used for learning map-
ping from RGBD in-air datasets to underwater images. As opposed to all
these methods, we present the first prior based on diffusion models
that does not rely on ground truth underwater supervision, and uses
the physical model for inference.

2.2 Diffusion Model Prior

Diffusion models. Diffusion models have emerged as a powerful type of gener-
ative models. In the last few years several formulations and variations have been
developed [25,47, 50, 52], most of which use a U-Net architecture [43] as a noise
predictor. Because the training relies on very large datasets and is extremely
time-consuming, significant work has been devoted to the setup where models
are first pre-trained on large datasets and only later fine-tuned to more specific
data, closer to the tasks at hand [44, 48]. In DepthGen [45] this approach is
taken forward, by using a pre-trained model to kickstart a new model trained on
different modalities using a different architecture. This is done by replacing the
input and output layers of the pre-trained U-Net. We take a similar approach
for training our RGBD prior, by using a pretrained diffusion model that was
trained on RGB only.

Conditional diffusion models have been used for various image restoration
tasks, by training models using different levels of supervision. Examples of similar
tasks as ours include dehazing and deraining [8,39,56], and shadow removal [22].
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Conditional diffusion models for underwater image enhancement have also been
proposed [37,53]. Our approach differs from these by focusing on image restora-
tion that inverts the physical model, rather than relying on supervised data that
is optimized for image appearance.
Diffusion model as a prior for clean images. In addition to conditional
generation of images, there is a growing body of research where diffusion models
are being used as clean image priors, and image restoration is formulated as
posterior sampling [5, 9, 11–14, 18, 21, 28, 29, 49, 51]. These include tasks like
denoising, inpainting, deblurring, and more general tasks. The limited access to
clean data in many cases, has led to research on training a prior of clean images,
using noisy training data only. In [1, 15, 30] a diffusion model prior is trained
using noisy data, assuming a known degradation model. Since this setup is not
directly applicable in our case, we chose instead to train our prior on clean data
that was not taken underwater.
Diffusion model prior for blind image restoration. A more challenging
task, is to use diffusion models as a clean image prior when the degradation model
is unknown or depends on unknown parameters. Several papers have proposed to
tackle this problem in different setups. In [17,38,59] the unknown parameters are
optimized during the sampling process with a reconstruction objective function.
In [10] a separate prior is trained for the unknown parameters, and sampled
in parallel with image sampling. Our method differs from the above in
that we learn a prior of the main unknown aspect of the degradation
model, namely the depth, together with the prior of the variables we
want to infer - the image color. This is done by training a single diffusion
model on the joint space of color and depth.

3 Preliminaries

3.1 Underwater Image Formation

In water, we observe two wavelength- and distance-dependent effects. First, the
direct signal reflected from the object is attenuated. Second, light is scattered
onto the object’s line-of-sight (LOS), creating an additive signal termed backscat-
ter that increases with distance. The occluding backscatter layer is independent
of the scene content. Thus, the visibility and contrast of further objects is sig-
nificantly reduced and their colors are distorted.

Following the revised underwater image formation model [2, 32], under am-
bient illumination image intensity (per pixel, per color channel) is given as:

I = J · e−ϕa·D + ϕ∞ ·
(
1− e−ϕb·D

)
, (1)

where I is the linear image captured by the camera of a scene with range D, J
is the clear scene that would have been captured had there been no water along
the LOS, and ϕ∞ is the water color at infinity, i.e., the backscatter at areas
that contain no objects. The two parameters ϕa and ϕb are the attenuation and
backscatter coefficients, respectively.
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3.2 Diffusion Models

Diffusion models have proven to be very effective in capturing the distribution
of natural images, given in training data. We describe here the formulation that
we use in our work, adopted from [16]. A diffusion model is defined by a Markov
chain designed to transform the distribution of real images x0 to a Gaussian
distribution xT , by gradually scaling down the image values and adding Gaussian
noise, using a schedule determined by the scalar parameters αt,

xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, I) . (2)

Based on this forward process, an inverse process is trained to gradually denoise
images starting from a Gaussian distribution, back into the distribution of the
original image dataset. This can be formulated as a factorization of the joint
distribution over the images in reverse order, p(x0:T ) =

∏T
t=1 pt(xt−1 | xt), and

pt(xt−1 | xt) is approximated by a Gaussian

pt(xt−1 | xt) ∼ N
(
µθ(xt, t), Σθ(xt, t)

)
, (3)

with parameters µθ and Σθ predicted by a trained neural network conditioned
on xt and t. Simulating this process results in samples form the approximated
data distribution p(x0). A popular implementation first predicts the noise at
each time step, and then computes the mean by

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
, (4)

where ϵθ(xt, t) is the neural network trained to approximate ϵ, and ᾱt =
∏t

s=0 αs.
The same neural network can also be used to predict a diagonal covariance
Σθ(xt, t). At any iteration, an estimate of the clean image x0 can be derived by
computing the mean of p(x0 | xt):

x̂0(xt, t) =
1√
ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
. (5)

The above formulation can also be developed from a score-based modeling
approach, where it can be shown that ϵθ(xt, t) is an approximation to the score
function ∇xt

log pt(xt).

3.3 Posterior Sampling

Under the score-based view, given an observation y and a likelihood function
p(y|x), we can use the same mechanism to sample from the posterior p(x|y),
using the posterior score function

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt) . (6)

This idea of adding a conditional signal to the score is also called guidance. The
challenge with the second term in Eq. 6, is that usually we are given a likelihood
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model based on the clean image x0, and not an intermediary noisy image xt. In
our case the underwater image formation model transforms a clean image to an
underwater observation. Connecting the model to the noisy sample xt leads to
the intractable integral pt(y|xt) =

∫
p(y|x0)p(x0|xt)dx0.

The various works on posterior sampling propose different approximations
of this integral. Some propose to collapse the uncertainty in y [9, 12–14, 21,
51]. In [18] a variational inference approximation is proposed, and in [5, 11, 28,
29, 49] the likelihood model is computed on either xt directly, or on the mean
x̂0 = E[x0|xt], as given in Eq. 5. After some experimentation, we decided to use
the latter approximation as formulated in DPS [11]:

∇xt
log pt(xt | y) ≈ ∇xt

log pt(xt) + s∇xt
log p

(
y | x̂0(xt, t)

)
, (7)

where s is the guidance scale used to control the weight of the approximated
likelihood term.

4 Method

We use the underwater image formation model (Eq. 1) as a forward model that
maps the space of natural images x to the space of underwater observed images
y. We aim to use this forward model to construct a likelihood term p(y | x), and
use it to sample from the posterior distribution of images (Eq. 7). In our case
this cannot be implemented directly since the image formation model contains
unknown parameters, the depth D at each pixel, and the water parameters,
ϕa, ϕb, ϕ

∞, which can differ between scenes. One way to deal with the unknown
depth, is to use a monocular depth estimator in a separate first stage, and then
use it as part of the forward model. In the results we discuss this approach and
show that it is suboptimal (method variant termed DA-Osmosis).

Another approach is to optimize the unknown parameters, including the
depth, during sampling. In some recent work, different methods to do this were
proposed [17, 38, 59]. However, these do not work properly when the unknown
parameter is high dimensional, highly complex, and strongly correlated with the
target image. In our early experimentation we found that in order to separate
the image into a clean image and the effects governed by the depth, we need
more than a good image prior.

Therefore, one of our main contributions, is to train a joint prior on both the
color and depth in clean images, and show how it can be used for underwater
image restoration. Following this we define x0 = (J,D), where J represents a
clear image and consists of the 3 color channels, and D is the depth image. This
allows us to use the following forward model (based on Eq. 1) conditioned on
the estimated clean image and depth x̂0 = (Ĵ0, D̂0):

fϕ(x̂0) = Ĵ0e
−ϕaD̂0 + ϕ∞(1− e−ϕbD̂0) , (8)

where ϕ = (ϕa, ϕb, ϕ
∞) are the remaining 9 unknown water parameters (a pa-

rameter per color channel for each of ϕ = (ϕa, ϕb, ϕ
∞)). We optimize ϕ during
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Fig. 3: [Left] Example images from outdoor RGBD datasets used for training our
prior. From left to right: DIODE [55], ReDWeb-S [36], HR-WSI [57], KITTI [20].
[Right] Samples from the trained RGBD prior. The samples demonstrate the inherent
correlation between RGB image and depth in our trained RGBD prior.

sampling, in a similar way to GDP [17], using gradient descent on the image re-
construction loss. The likelihood term used for guidance is defined as a Gaussian
around fϕ(x̂0) with a fixed variance.

Training a joint prior on color and depth, not only allows us to use the above
forward model, but also exploits the diffusion model capacity to capture the
complexity of the depth image and its correlations with the clean color image.

4.1 Training the Prior

To learn a natural image prior, we train the joint prior model on both color
and depth using public RGBD datasets of outdoor scenes that were taken in
air. While differing from underwater images, the ability to use large amounts of
high quality training data leads to a prior that captures the correlation between
color and depth in natural scenes, which as we show, is an important aspect for
underwater image restoration.

For the sake of data efficiency and training time, we start with a pretrained
diffusion model trained on ImageNet (we take the unconditional model from [16]),
and finetune it on RGBD data. We implement this, inspired by DepthGen [45],
by replacing the first and last layers of the U-Net to 4 channels rather than 3,
and initializing those layers randomly. The datasets we use for finetuning are
(see Fig. 3[left]): DIODE [55], RedWeb-S [36], HR-WSI [57], KITTI [20], with
16884, 2179, 20378, 23946 pictures, respectively.

A major challenge in working with RGBD data is to turn the available depth
information into a proper image. This includes filling holes and scaling the values
to a standard range. Since each of the above datasets were collected in a different
manner, we treat each of them differently. This is detailed in the appendix.
Fig. 3[right] shows two samples from the prior that show corresponding color
and depth images. While prior samples demonstrate an evident domain gap
between in-air and underwater data, our results show that posterior samples are
not affected by the gap, and can leverage the strong correlation between depth
and color in natural scenes.
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4.2 Sampling from the Posterior

Given a trained prior, we perform underwater image restoration by sampling
from the posterior with guidance of the image formation model. The sampling
process is described in Figs. 2, 4. In each iteration we generate samples of both
the image and the depth, while optimizing the water parameters. This results
in a gradual update to the estimates of the clean image, and the depth, demon-
strated in Fig. 4[right]. We adopt the sampling method in DPS [11], using the
reconstruction loss,

∥∥y − fϕ(x̂0)
∥∥2
2
, which is the negative log-likelihood formed

from the model in Eq. 8. Similar to GDP [17], the remaining unknown parame-
ters ϕ are optimized in parallel to the inverse sampling process, using gradient
descent on the same loss used for guidance.

Note that one of our main novelties is that the RGBD prior is used as an
inherent part of the iterative method and not as a stand-alone depth estimator.
The depth is estimated together with the image in every iteration, guided by the
underwater model, see, e.g., Fig. 4[right]. As demonstrated in the results, this
improves the restoration quality over using a fixed estimated depth of the scene.

Running posterior sampling, guided by a reconstruction loss only, we observe
two problems. First, for pixels with large depth values, the reconstructed image
is dominated by the backscatter, making the estimation of the clean pixel color
values unstable. Second, the color values can shift outside the valid range, causing
color saturation. To overcome the first issue we multiply the reconstruction loss
in every pixel by the estimated depth value (without passing the gradients of
this operation, denoted by sg):

Lrec =
∥∥sg(D̂0) · (y − fϕ(x̂0))

∥∥2
2

. (9)

In order to overcome the second issue, we introduce two auxiliary losses. The first
penalizes RGB values outside the valid range [−1, 1], and the second encourages
the average values of each channel to approach the middle of the color range (in
line with the gray world assumption). We implement the two auxiliary losses as:

Lval = λv

∑
i,c

max
(∣∣∣Ĵ0(i, c)∣∣∣− Tv, 0

)2

, Lavrg = λa

∑
c

∣∣∣∣∣∑
i

Ĵ0(i, c)− Ta

∣∣∣∣∣
where Ĵ0(i, c) is the value of color channel c of pixel i, assuming the valid color
range is [−1, 1], Tv and Ta are thresholds set to values close to 1 and 0 respec-
tively, and λv, λa are the scalar weights of both losses. The total loss is then:

L = Lrec + Lval + Lavrg . (10)

At each iteration we compute the gradient of the loss with respect to xt, which
forms the log-likelihood gradient in the posterior score (Eq. 7), and the gradient
with respect to ϕ which is used to update the parameters in the underwater
model. In order to stabilize the optimization, we apply gradient clipping by
value, to the gradients of xt, and we run the optimization of ϕ only in some of
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Fig. 4: Our algorithm. [Left] Detailed steps of our algorithm. [Right] Example of
how Ĵ0, D̂0 change during the iterations.

the sampling steps (defined by the values Optimstart and Optimend), running N
iterations of gradient descent in each step. When the gradient of xt is applied
in the sampling step, it is multiplied by a guidance scale s. We find that using
a smaller scale for the depth channel leads to better results. This makes sense
as while all channels are treated the same in the prior, the depth has a different
role in the forward model (specifically it is used inside an exponent), and this
can lead to a different gradient scale. More details on the implementation are
given in the appendix.

5 Results

We use a prior on 256× 256 images, with sampling time of about 3 minutes per
image on an Nvidia A100 GPU. We present here selected results and analysis.
Please refer to the appendix for a complete set.

Real-World Scenes. We present an extensive comparison on real-world lin-
ear images from the datasets SQUID [7], SeaThru [3], SeaThruNerf [32], and
additional images acquired in different locations in the world, the Indian and
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Pacific Oceans, and Mediterranean, and Red Seas. Images are white-balanced
as pre-processing. All runs use the same set of parameters. Fig. 1 shows several
results of both image restoration and depth estimation.

We compare image restoration with the following methods: CWR [24],
DM [53], FUnIE-GAN [27], GDCP [41], IBLA [42], MMLE [60], semi-UIR [26],
Ucolor [33], USUIR [19], UW-Net [23], waternet [35], and USe-ReDI-Net [54].
For compactness, Fig. 5 summarizes the results for a chosen subset of methods.
The complete comparison is shown in the appendix. Among previous methods,
we found GDCP to be the most consistent. Our result recovers the full range of
the scenes, specifically improving contrast of objects that are further away (note
the zoomed-in objects in the far areas, e.g., the diver in row 1). Our method
recovers vibrant and consistent colors also in further areas. For example, in rows
2,3,4 note that the background rocks and sand appear bluish in all methods
except of ours.

We also compare to a method that restores the RGB using a fixed depth that
is pre-estimated using an external SOTA method, depth anything (DA) [58]. We
use the pre-estimated depth in our method’s pipeline instead of our gradually
estimated depth. We term this method DA-Osmosis, and the results show that
our method restores the far areas with better color, emphasizing the advantage
of using our joint RGBD prior.

We compare depth estimation with GDCP [41], IBLA [42], unveiling [6],
UW-Net [23], and monoUWnet [4], and depth anything (DA) [58]. In GDCP [41]
and unveiling [6] we compute the depth from the output transmission maps. Our
depth estimations have more details and better explain the scenes (Fig. 5).

In addition, we conducted a non-reference quantitative comparison using the
MUSIQ [31] measure on 50 real-world images presented in the paper and ap-
pendix. Our method achieved the highest score. The quantitative results are
summarized in Table 1.

The UIEB dataset [35] is sometimes used for quantitative evaluation of image
restoration. However, it is collected from various sources and is not linear. Thus
it is not suitable for physics-based methods like ours. In addition, the ‘ground
truth’ of the UIEB dataset is chosen from results of previous methods and it
is not the real ground truth. Fig. 6 shows four examples (out of many) where
our result removes more water effects than the ground truth, even despite the
non-linearity of the input.

Simulation. We conducted a simulation following [26, 34] using all the 1449
images from the NYU-v2 RGBD dataset [46] with randomly varying water pa-
rameters and generated the underwater images with the image formation model
in Eq. 1. For fairness in comparison with other methods we applied ϕa = ϕb.

The quantitative results are summarized in Table 2. Our method substan-
tially outperforms other methods in the image restoration metrics of PSNR,
SSIM, and LPIPS. We emphasize that our prior was not trained on this data,
or indoor data at all. Moreover, two of the methods [26,34] we outperform were
trained on this data.
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Fig. 5: Real-world restoration results. From left to right: white-balanced input,
contrast stretch, GDCP [41], Ucolor [33], CWR [24], semi-UIR [26], DM [53], Depth
Anything [58] - Osmosis, Osmosis (ours). Zoom-in colored rectangles emphasize far
objects that have higher contrast in our results. Real-world depth results. From
left to right: GDCP [41], IBLA [42], unveiling [6], UW-Net [23], monoUWnet [4], Depth
Anything [58], Osmosis (ours). Our depth results are smoother and less affected by
object gradients. The reader is encouraged to zoom-in.
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Fig. 6: Example results on UIEB [35], a dataset comprised from non-linear images
with ground truth produced by different enhancement algorithms. Our method yields
better results than the dataset’s ground truth. See for example the color of the sand,
the orange color of the fish in the top-left, and the divers’ authentic skin color in the
bottom-right.

Fig. 7: Ablation. Ablations #1,#5,#6 show the importance of the losses we added
to the reconstruction loss. Without Lval (#6), the colors tend to “explode” and over-
saturate. Without Lavrg (#5) the colors sometimes skew towards pink/purple. In #2,
the further areas are not restored well, because the loss is not weighted by the depth
D. In #3 the guidance scale is the same for the RGB and depth channels. This harms
the depth reconstruction. In #4 we set ϕa = ϕb (separately per color channel). Since
this is an inaccurate model, the restoration in further areas is harmed.

Ablation. To demonstrate the effect of different components in our methods,
we conduct an ablation study of the following variants: 1. L = Lrec (instead of
Eq. 10); 2. Removing weighting by D̂0 in Eq. 9 3. Same guidance scale s for
all channels; 4. ϕa = ϕb; 5. L = Lrec + Lval (remove Lavrg from Eq. 10); 6.
L = Lrec+Lavrg (remove Lval from Eq. 10). Numerical results on the simulation
for variants #1-#3 are presented in Table 2. Ablations #4-#6 are shown only on
real world images since in the simulation we do not use Lavrg, and ϕa = ϕb. Fig. 7
presents the results of all variants on one of the scenes. We see that the additional
losses are important to prevent color saturation and shift. Increasing the loss
weight with depth improves restoration in further areas. Separating guidance
scales between the RGB and depth channels improves depth reconstruction.
Setting ϕa ̸= ϕb extends the range of the restoration.
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Method MUSIQ↑
input 51.59

contrast stretch 53.75
CWR [24] 39.63
DM [53] 54.64

FUnIE-GAN [27] 42.70
GDCP [41] 56.25
IBLA [42] 54.42

MMLE [60] 56.26
semi-UIR [26] 54.99
Ucolor [33] 47.73
USUIR [19] 52.44
UW-Net [23] 46.02
waternet [35] 53.64
unveiling [6] 50.83

DA-osmosis [58] 51.23
osmosis (ours) 56.62

Table 1: Non-reference quantitative
comparison on 50 real-world images us-
ing MUSIQ [31]. Our method achieves
the highest score.

Method PSNR↑ SSIM↑ LPIPS↓
contrast stretch 17.13 0.83 0.11

CWR [24] 16.93 0.79 0.20
DM [53] 17.41 0.82 0.12

FUnIE-GAN [27] 17.64 0.77 0.21
GDCP [41] 12.41 0.71 0.16
IBLA [42] 15.07 0.70 0.19

MMLE [60] 17.00 0.74 0.17
semi-UIR [26] 17.82 0.83 0.12
Ucolor [33] 17.92 0.83 0.10
USUIR [19] 16.76 0.80 0.18
UW-Net [23] 18.04 0.75 0.26
waternet [35] 17.27 0.82 0.11
unveiling [6] 16.34 0.79 0.18
ablation #1 21.09 0.86 0.09
ablation #2 22.17 0.88 0.07
ablation #3 22.00 0.88 0.06

osmosis (ours) 22.74 0.89 0.06
Table 2: Quantitative comparison on
the simulation. Our method achieves
best scores in image restoration.

6 Discussion

In this work we demonstrated how to harness the strength of a new RGBD diffu-
sion prior to achieve state-of-the-art results on underwater image restoration. To
do this we solved several challenges: i) because of lack of clean underwater image
data we use datasets of scenes in air; ii) we notice that the color prior does not
suffice to guide restoration, therefore, we add the scene depth to the prior; iii) We
use the physical image formation model to guide restoration, and also estimate
the water parameters in the process. This results in the most comprehensive
single underwater image restoration method to-date. It does not train on any
underwater images and therefore does not overfit to any. It gives higher weight
to further objects and therefore is superior in reconstructing all the details of the
scene. Jointly solving for the depth results in excellent depth estimation from
monocular images.

There is a domain gap between the prior (trained on in-air data) and under-
water data. This is intentional. The beauty of our method is that by incorporat-
ing the underwater model in the sampling it succeeds even without training on
underwater data (that is very hard to obtain). Thus, it is not specialized for a
certain type of water or objects, and it learns the color distribution of natural
images not degraded by water.

Like all diffusion models with U-Nets, our method is limited by a fixed res-
olution and long running time. This could potentially be improved using other
network architectures and sampling methods.
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Appendix

In this appendix we give more details about the implementation- prior training and
optimization, and provide multiple additional results. All figures are placed at the end
of the document.

A Data Preprocessing and Training

Here we describe the different datasets used for training, and the preprocessing per-
formed on each.

KITTI [20] - 23946 images. Depth information is from Lidar measurement and is
sparse. We interpolate it into dense depth images using [62]. We then normalize by
the maximum measurement value of 80 meters. When computing the loss we mask out
depth pixels of remaining holes and non-depth information like the sky.

DIODE [55] - 16884 images. Depth information is from a high quality laser scanner.
We normalize by the maximum value of the depth sensor which is 350. Valid depth
masks are supplied, and used when computing the loss.

HR-WSI [57]- 20378 images. Computed with stereo cameras. The data is a relative
disparity with values between 0 and 1, but without an absolute normalization value. We
compute the depth as 1−disparity. Valid mask are provided and used when computing
the loss.

Red-Web-S [36] - 2179 images - The depth information is computed from a model’s
prediction and is already dense and normalized.

We crop and resize the images to get a size of 256x256. In KITTI we crop-out
the upper part of the image which contain only sky to get a 256 height, and then use
different random horizontal crops of 256. In all other datasets we resize the smaller
dimension into 256, and crop the other dimension at the center. We perform additional
data augmentations by horizontal and vertical flips.

Details on the training process. We train both ϵθ(xt, t) and Σθ(xt, t) (defined
in Sec. 3.2 in the paper). We use the two losses suggested in [16], Lsimple is MSE with
a mask for the non-valid pixels (e.g., holes and horizon) in the image, and Lvlb, a
Variational Lower Bound.

B Implementation Details

We give a list of implementation details and specific values used in the experiments.
These values are used throughout all experiments except for some different values in
the simulation (stated in bold below).

1. Both in training and in sampling we use 1000 sampling steps between 0 to T = 1.
2. We used a linear schedule for the diffusion noise variance, in the following range:

αt = 1− βt, β0 = 1e−4, β1 = 2e−2

3. We use a U-Net architecture which was suggested in [16], for 256x256 input. In or-
der to handle RGBD data, we made modifications for the first and last convolution
layers. The first convolution layer gets 4 channels as input instead of 3 channels,
and the last convolution output is 4 channels instead of 3. These two layers are
initialized at random before finetuning.
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4. Before the depth map is used in the underwater model, it is linearly scaled from
the range [−1, 1] into the range [0.56, 3.36] using the function:

g(D̂0) = 1.4 · (D̂0 + 1.4)

In the simulation, this is mapped to a [0, 1] range instead, using
g(D̂0) = 0.5 · (D̂0 + 1). The model’s depth range is tuned as a standard hyperpa-
rameter and is the same for all the real-world images.

5. In the reconstruction loss, the weight is computed according to the same linearly
scaled depth using a ‘stop-gradient’ operator.

g(sg(D̂0)) = 1.4 · (sg(D̂0) + 1.4)

This is used both for real world and the simulation experiments.
6. For all real world experiments we use a guidance scale, separated to each of the

RGBD channels, as following: red: 7, green: 7, blue: 7, depth: 0.9. In the simulation
the values are: red: 4, green: 4, blue: 4, depth: 1.

7. The weights of the auxiliary losses are:

λv = 20, λa = 0.5

In the simulation we do not use Lavrg :

λv = 40, λa = 0

8. The thresholds used in the auxiliary losses are: Tv = 0.7, Ta = 0.5
9. The threshold of gradient clipping we used is 0.005. In the simulation The thresh-

old of gradient clipping we used is 0.001.
10. We initialized the water parameters to:

(a) ϕa : 1.1, 0.95, 0.95
(b) ϕb : 0.95, 0.8, 0.8
(c) ϕ∞ : 0.14, 0.29, 0.49
In the simulation we use the simpler model where ϕa = ϕb, and initialize according
to ϕa above, and ϕ∞ is initialized to [0.2, 0.4, 0.7].

11. The optimization schedule of ϕ was set to run from step t = 0.7 down to step t = 0,
with 20 gradient descent iterations at each step.

Optimstart : 0.7, Optimend : 0, N : 20

C Real World Results

In this appendix we present a total of 48 results of Osmosis on challenging real world
scenes. For 16 real-world scenes (8 of them were presented in the mai n paper) we
provide extensive comparisons with other methods in Figs. 8, 9, 10, 11. Additionally,
we provide 16 additional scenes of real-world restored RGB and depth maps generated
by Osmosis in Fig. 13. We also include results on additional 16 images in Fig. 16.

C.1 Full comparisons
In Figs. 8, 9, 10, 11 we present results of the complete suite of comparison methods on
the all the real-world scenes presented in the main paper and on additional scenes: a) In-
put, b) contrast stretch, c) GDCP [41], d) IBLA [42], e) unveiling [6], f) UW-Net [23],
g) waternet [35], h) Ucolor [33], i) MMLE [60], j) CWR [24], k) FUnIE-GAN [27],
l) USUIR [19], m) semi-UIR [26], n) DM [53] , o) DA-Osmosis [58] , p) Osmosis (ours).
For USe-ReDI-Net [54] there is no released code, therefore comparison is shown in
Fig. 12 on the 3 linear scenes that were presented in [54].
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C.2 More results

We show results on additional scenes from SQUID [7] and Seathru [3] in Fig. 13.

D Extended Ablations

In addition to the example provided in Fig. 7 of the main paper, three additional ex-
amples are presented here for the same ablation study. To demonstrate the effect of all
parts of our methods, we conduct an ablation study of the following variants:
1. L = Lrec (instead of Eq. 10).
2. Removing weighing by D̂0 in Eq.9.
3. Same guidance scale s for all channels.
4. ϕa = ϕb

5. L = Lrec + Lval (remove Lavrg from Eq. 10).
6. L = Lrec + Lavrg (remove Lval from Eq. 10).

Numerical results on the simulation for variants #1-#3 are presented in Table 1
in the main paper. Ablations #4-#6 are shown only on real world images since in the
simulation we do not use Lavrg, and ϕa = ϕb. Fig. 14 presents the results of all variants
on 3 scenes presented in Fig. 1 in the main paper. We see that the additional losses
are important to prevent color saturation and shift. Increasing the loss weight with
depth improves restoration in further areas. Separating guidance scales between the
RGB and depth channels improves depth reconstruction. Setting ϕa ̸= ϕb extends the
range of the restoration.

E Simulation

Fig. 15 depicts a method comparison on several scenes from the simulation. We can see
that our method cleans the entire range of the image, while previous methods recover
mostly the nearby areas.

F Consistency Analysis

As diffusion is a random process, we test our method’s consistency in two different
experiments. Fig. 16 demonstrates a consistency experiment, where we ran our method
on several images of the same scene from several viewpoints. We can see the resulting
scene has similar appearance, and the depth is consistent.

Fig. 17 shows multiple results on the same image using a different random seed
each time. We see that our results are very similar even with different seeds, showing
the strength of our formulation and losses.

G Results on Haze

Fig. 18 shows our results on several haze images. Although our method was not designed
and optimized for haze, the haze is removed in the restored images, the scenes have
vivid colors and the depth maps are good. To run our method on these images we
performed a “degamma” operation on them (I2.2), and set ϕa = ϕb constant for all
color channels (one parameter instead of 6).
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H Non-linear images

Every physics-based method expects as input linear images. We demonstrate the effect
of inputting non-linear images in Fig. 19. We took the uncompressed non-linear images
of the linear images used as input in Fig. 1 in the main paper, performed white-balance
on them, and used them as input for our method. We can see in the results that the
range of the restoration is smaller (i.e., the restoration stops at some point), for both
color and depth. In addition, the colors are skewed.

I Failure Cases

Fig. 20 demonstrates 3 failure cases on real-world linear images. In example 1, there
is an artifact in the top-right corner. In example 2 the restored colors are reddish and
saturated. In example 3 there is a pinkish hue, especially in the horizon (“sky”) area.

We have noticed that, sometimes, the sky is not recognized as the most far area of
the restored depth map (e.g., example 2 in Fig. 20). A possible reason is that during
training, in some of the data, the sky is masked out and replaced by a value of 0.
Although these pixels are masked out in the loss as well, they can still affect the prior
through the input images. The effect can also have been amplified by the vertical
flipping in our data augmentation, resulting in many cases where the top of the image
has smaller depth.

J Negative Results and Abandoned Directions

We give here a list of directions that were tried and either gave worse results to the
ultimate method we use, or did not show any promise in early experimentation and
was therefore abandoned. The goal of this section is to share more information in order
to give a bigger picture of our experimentation process. Many of the results here were
not thoroughly examined and therefore should be treated as such.

1. We tried computing the gradient w.r.t x0 rather than xt for the likelihood score.
This is similar to the Backward Universal Guidance suggested in [5]. This resulted
in noisy images.

2. We ran a few initial experiments using Dynamic Guidance Scheme [59, 63], and
changing the guidance scale during the sampling process as suggested in [5, 21].
We did not see significant improvement, but we believe further experimentation in
this direction could be fruitful.

3. We tried to completely stop the guidance for the last few iterations as suggested
in [63], because we noticed that in some cases the restored colors in early stages of
the sampling looked better than in the end. This resulted in improvements to the
colors, but the geometric details were less preserved.

4. We tried an inner optimization of x̂0 for several iterations at each as suggested
in [5]. This resulted in the generated image being too noisy, which can perhaps be
explained as the sampling process going too far off the manifold of the prior.

5. We tried running several iterations of sampling and ϕ optimization for the same
time step [38], or per-step self-recurrence [5]. The aim of this feature is to keep the
restored image committed to the prior and in addition strengthening the guidance.
In our case, this resulted in somewhat distorted colors and in a worse estimation
of the depth geometry.
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6. We considered different annealing scheduling of the sampling time [21]. We did not
perform vast experimentation with this. In our results the color restoration was
more conservative, i.e. more stable but fixing less of the water effects.

7. We tried to clip the x̂0 image values in the forward model, instead of clipping the
gradients. This lead to color saturation or de-saturation (colors getting closer to
black). We found that gradient clipping in addition to the Lval auxiliary loss gave
better stability to the color restoration.
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Fig. 8: Comparisons with all the methods on the scenes presented in Fig. 1
in the main paper. a) Input, b) contrast stretch, c) GDCP [41], d) IBLA [42], e) un-
veiling [6], f) UW-Net [23], g) waternet [35], h) Ucolor [33], i) MMLE [60], j) CWR [24],
k) FUnIE-GAN [27], l) USUIR [19], m) semi-UIR [26], n) DM [53] , o) DA-Osmosis [58]
, p) Osmosis (ours). Our restorations have the best colors and recovery range. The
reader is encouraged to zoom-in.
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Fig. 9: Comparisons with all the methods on the scenes presented in Fig. 5
in the main paper. a) Input, b) contrast stretch, c) GDCP [41], d) IBLA [42], e) un-
veiling [6], f) UW-Net [23], g) waternet [35], h) Ucolor [33], i) MMLE [60], j) CWR [24],
k) FUnIE-GAN [27], l) USUIR [19], m) semi-UIR [26], n) DM [53] , o) DA-Osmosis [58]
, p) Osmosis (ours). Our restorations have the best colors and recovery range. The
reader is encouraged to zoom-in.
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Fig. 10: Comparisons with all the methods on additional scenes. a) Input,
b) contrast stretch, c) GDCP [41], d) IBLA [42], e) unveiling [6], f) UW-Net [23],
g) waternet [35], h) Ucolor [33], i) MMLE [60], j) CWR [24], k) FUnIE-GAN [27],
l) USUIR [19], m) semi-UIR [26], n) DM [53] , o) DA-Osmosis [58] , p) Osmosis
(ours). Our restorations have the best colors and recovery range. The reader is
encouraged to zoom-in.



Osmosis: RGBD Diffusion Prior for Underwater Image Restoration 27

Fig. 11: Comparisons with all the methods on additional scenes. a) Input,
b) contrast stretch, c) GDCP [41], d) IBLA [42], e) unveiling [6], f) UW-Net [23],
g) waternet [35], h) Ucolor [33], i) MMLE [60], j) CWR [24], k) FUnIE-GAN [27],
l) USUIR [19], m) semi-UIR [26], n) DM [53] , o) DA-Osmosis [58] , p) Osmosis
(ours). Our restorations have the best colors and recovery range. The reader is
encouraged to zoom-in.
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Fig. 12: Comparisons with [54]. Since there is no published code for [54] we can
only compare with results published in the paper on linear scenes. Our restorations
have consistent colors across the scenes.



Osmosis: RGBD Diffusion Prior for Underwater Image Restoration 29

Fig. 13: Additional Results. Osmosis results on several scenes from Seathru [3] and
SQUID [7] datasets. The restored image displays significantly less water effects, while
maintaining consistent colors. We note that the estimated depth for very bright objects
(e.g. the color boards) tends to be too close. This could be a result of the irregularity
of having such objects within natural scenes, considering the training data. In any
case this does not have a noticeable effect on the restored image. The reader is
encouraged to zoom-in.
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Fig. 14: Ablation results on several real-world images. Ablations #1,#5,#6
demonstrate the importance of the losses we added to the reconstruction loss. Without
Lval (#6), the colors tend to ”explode“ and oversaturate. Without Lavrg (#5) the colors
sometimes skew towards pink/purple. In ablation #2, we can see that the further areas
are not restored well, this is because the loss is not weighed by the depth D. In ablation
#3 the guidance scale is the same for the RGB and depth channels. This harms the
depth reconstruction. In ablation #4 we set ϕa = ϕb (separately per color channel).
Since this is an inaccurate model, the restoration in further areas is harmed.
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Fig. 15: Several color restoration results on simulated images. a) Input, b) con-
trast stretch, c) GDCP [41], d) IBLA [42], e) unveiling [6], f) UW-Net [23], g) water-
net [35], h) Ucolor [33], i) MMLE [60], j) CWR [24], k) FUnIE-GAN [27], l) USUIR [19],
m) semi-UIR [26], n) DM [53] , o) Osmosis (ours), p) Ground-truth. Our color
restoration achieves highest PSNR, and cleans more areas in the scenes.
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Fig. 16: Consistency of results. We ran our method on several images of the same
scene from several viewpoints. The resulting restorations have similar appearances in
terms of color, and the depth is consistent.
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Fig. 17: Consistency of results given different random seeds for 3 different
scenes. Each row presents results with different random seeds. We see that the results
are very similar in both color and depth, showing the strength of our method’s opti-
mization procedure.
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Fig. 18: Results on haze. Though not our main goal, we demonstrate that our
method can potentially work also on haze images, when setting ϕa = ϕb (identical for
all color channels) in Eq. 8 in the main paper. Note the vivid colors and the depth
maps.
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Fig. 19: Effect of non-linear input. We took the non-linear camera jpgs for the
scenes presented in Fig. 1 in the main paper and ran our method after white-balancing.
We see that the reconstruction range of both the colors and the depth maps is limited,
and the restored colors are skewed.
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Fig. 20: Real-world failure cases. In example 1, there is an artifact in the top-right
corner. In example 2 the restored colors are reddish and saturated. In example 3 there
is a pinkish hue, especially in the horizon (“sky”) area.
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